Residential building shell modeling

September 6, 2022

Prepared for:

EER Communications

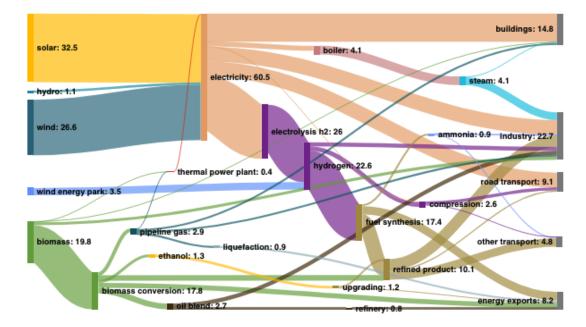
Prepared by:

Audrey McManemin

EVOLVED ENERGY RESEARCH

Agenda

- Background & motivation
- Data sources
- Methodology
- Results


Background & Motivation

Building energy use

- Buildings use a lot of energy even in decarbonization scenarios and building efficiency measures may help meet demand for clean energy reliably and affordably but:
 - There is limited understanding in bottom-up energy modeling of the overall energy impact and cost of making homes more energy-efficient
 - Specifically, improvements to building shells is an uncertain factor in predicting future peak load from heating¹ and thus the cost-effectiveness of building strategies (full-electrification, hybridization, clean fuels, etc.) which features prominently in EER's state and regional analyses

FIGURE 19. Sankey diagram for 2050 100% Renewables scenario (Exajoules)

Current state of residential building modeling

- EER's previous analysis of building shell energy efficiency potential has been relatively coarse and primarily focused on building equipment electrification
 - e.g. replacing gas furnaces and water heaters with electric heat pumps
- In previous modeling work, a 1% per year upgrade rate is assumed for the building stock³. This
 represents that one out of every hundred homes in the existing building stock is upgraded to 2010
 energy efficiency standards every year.
- Service demand reductions were based on average savings values across census divisions and building types and the underlying source of these savings was somewhat unclear. This would mean that a house built in 1950 in Maine and a new construction in Massachusetts would see the same percentage impact (i.e. reduction in heating demand)
- The bespoke nature of retrofits means that a connection between cost data and energy savings has been difficult to analyze at the necessary granularity.

- <u>Building shell</u>: the outer structure or envelope of a home, including walls, roof, windows, and doors
- <u>Service demand</u>: the amount of energy required to maintain a desired temperature (i.e. real time demand for heating / cooling)
- <u>Efficiency measure</u>: an upgrade or modification of a building element in order to improve its energy efficiency (e.g. installation of windows, insulation upgrade, air sealing)
- <u>Package</u>: a combination of efficiency measures applied to a home

- What impact do energy efficiency upgrades have on service demand? What benefits do they provide?
- What does it cost to make homes more energy efficient? Which packages are most cost effective?
- What types of buildings should be upgraded first?

Analysis tasks and deliverables

- Identify data sources for building stock, service demand, and cost impact of retrofits
- Integrate databases into one table for analysis and demand-side model input
- Evaluate the impact on service demand of applying different combinations of upgrade packages to residential building shells
- Evaluate the role and relative importance of residential building shell efficiency measures in decarbonization pathways
- Deliverables: data table & pipeline, blog post, final presentation

Data Sources

ResStock 2024.1 Database

- Statistical representation of U.S. residential housing stock
- Contains 2.2 million dwelling unit models, each of which is representative of a small subset of the real housing stock (~60 homes)
 - Each model has its own value for each of over 100 building characteristics
- Provides annual estimates of energy consumption, carbon emissions, utility bills, and energy burden⁴
- Evaluates a baseline case and 260 energy efficiency packages
- Packages include combinations of upgrades to building envelope, appliances, pools and spas, lighting, water heating, and HVAC
- Results do not consider existing equipment lifetime, consumer adoption, or any factors that could limit adoption (i.e. equivalent to overnight technical potential)

ResStock Building Shell Efficiency Measures

Name	Description		
ENERGY STAR Windows	Replace any less-efficient existing windows with windows that meet ENERGY STAR (v7) criteria.		
Thin Triple Windows	Replace any less efficient existing windows with thin triple-pane windows.		
Attic Floor Insulation	Increase attic floor insulation to IECC-Residential 2021 levels for dwelling units with vented attics and any lower level of insulation		
General Air Sealing	30% reduction in infiltration (ACH50) for dwelling units with greater than 10 ACH50 in the baseline		
Duct Sealing	Duct sealing to 10% leakage and R-8 duct insulation for any leakier or less-insulated ducts		
Drill-and-fill Wall Insulation	Drill-and-fill wall insulation (R-13) for dwelling units with no wall insulation and wood stud walls		
Foundation Wall and Rim Joist Insulation	Add R-10 interior insulation to foundation walls and rim joists in conditioned basements and crawlspaces; seal crawlspace vents		
Exterior Continuous Wall Insulation	1" exterior insulation to foundation walls and rim joists in conditioned basements and crawlspaces; seal crawlspace vents		
IECC 2021 Air Sealing	Improve dwelling unit infiltration to IECC 2021 air sealing requirements		
Roof Insulation	R-30 insulation for less-insulated finished attics and cathedral ceilings		
Improved Ventilation	Energy recovery or exhaust-only ventilation added to dwelling units depending on climate zone and ACH50 values.		

Building Shell Only Efficiency Packages

Package	Included Measures
2.01 Windows, Thin Triple	Thin triple windows
2.02 Windows, ENERGY STAR	ENERGY STAR windows
2.03 Envelope, Light Touch	Attic floor insulationGeneral air sealing
2.04 Envelope, Intermediate	 Attic floor insulation General air sealing Duct sealing Drill and fill wall insulation Foundation wall and rim joist insulation with sealing of crawlspace vents
2.05 Envelope, Advanced	 Attic floor insulation Duct sealing Drill and fill wall insulation Foundation wall and rim joist insulation with sealing of crawlspace vents ENERGY STAR windows Exterior continuous wall insulation IECC 2021 air sealing Improved ventilation

National Residential Efficiency Measures Database (REMDB)

- Contains residential building retrofit measures and associated costs
- Includes cost estimates for upgrading or modification of appliances, water heating, HVAC, envelope, lighting, and other miscellaneous retrofits
- Provides a range of costs and an average value
- Cost data represents the total cost to implement the retrofit measure including installation costs⁵

Before Componer	nt Pro	perties	Performance Standards	Lifetime		
8 ACH50	 Living Space 	e ACH50: 8.0 1/hr		999 Years		
After Components	Properties		Performance Standards	5	Lifetime	Cost [\$/ft^2 Finished Floor]
1 ACH50	 Living Space ACH50: 1.0 1/h 	r 3C, 4A, 4 exceeds l	ECC 2009 (1A, 1B, 1C, 2A, 3, 4C, 5A, 5B, 5C, 6A, 6B, 6 ECC 2012 (1A, 1B, 1C, 2A, 3, 4C, 5A, 5B, 5C, 6A, 6B, 6	C, 7, 8) 2B, 2C, 3A, 3B,	999	1.6 5:
2 ACH50	 Living Space ACH50: 2.0 1/h 	r 3C, 4A, 4 exceeds l	ECC 2012 (1A, 1B, 1C, 2A, 3, 4C, 5A, 5B, 5C, 6A, 6B, 6 ECC 2009 (1A, 1B, 1C, 2A, 3, 4C, 5A, 5B, 5C, 6A, 6B, 6	C, 7, 8) 2B, 2C, 3A, 3B,	999	1.4 🔅
3 ACH50	 Living Space ACH50: 3.0 1/h 	r exceeds I 3C, 4A, 4I meets IEC	ECC 2012 (1A, 1B, 1C, 2A, ECC 2009 (1A, 1B, 1C, 2A, B, 4C, 5A, 5B, 5C, 6A, 6B, 6 CC 2012 (3A, 3B, 3C, 4A, 4E B, 6C, 7, 8)	2B, 2C, 3A, 3B, 6C, 7, 8)	999 Years	1.2 5:
4 ACH50	 Living Space ACH50: 4.0 1/h 	r exceeds l	ECC 2012 (1A, 1B, 1C, 2A, ECC 2009 (1A, 1B, 1C, 2A, B, 4C, 5A, 5B, 5C, 6A, 6B, 6	2B, 2C, 3A, 3B,	999 Years	0.94 🗊
5 ACH50	 Living Space ACH50: 5.0 1/h 	r exceeds l	CC 2012 (1A, 1B, 1C, 2A, 2E ECC 2009 (1A, 1B, 1C, 2A, B, 4C, 5A, 5B, 5C, 6A, 6B, 6	2B, 2C, 3A, 3B,	999 Years	0.73 🗊
6 ACH50	 Living Space ACH50: 6.0 1/h 		ECC 2009 (1A, 1B, 1C, 2A, B, 4C, 5A, 5B, 5C, 6A, 6B, 6		999 Years	0.52 5:
7 ACH50	 Living Space ACH50: 7.0.1/b 	r			999 Years	0.31 5:

Example costs for air sealing.



Methodology

Data architecture

- Output table has one row per dwelling unit + package combination
 - 6 packages x 2.2 million dwelling unit
- Includes building characteristics such as location, vintage, occupants, building geometry, input and upgraded measure attributes (insulation levels, windows, air sealing levels)
- Costs calculated for each individual measure and at the overall package level

Building attributes

Geometry: square footage, height, attic and foundation types

- Location: city, county, climate zone, census division
- Building type: number of units, height, ACS and RECs classification, vintage
- Shell characteristics: insulation, ventilation, materials
 - Both initial and upgraded characteristics

in.sqft	in.county_name	in.geometry_building_type_recs	in.infiltration	upgrade.infiltration
2179.0	Washoe County	Single-Family Detached	15 ACH50	3 ACH50
2179.0	Tarrant County	Single-Family Detached	15 ACH50	3 ACH50
854.0	Guilford County	Multi-Family with 5+ Units	6 ACH50	3 ACH50
1138.0	Genesee County	Multi-Family with 2 - 4 Units	50 ACH50	3 ACH50
2678.0	Mecklenburg County	Single-Family Detached	6 ACH50	3 ACH50
5587.0	Jackson County	Single-Family Detached	6 ACH50	3 ACH50
623.0	Hennepin County	Multi-Family with 5+ Units	10 ACH50	3 ACH50
881.0	Coffee County	Single-Family Detached	15 ACH50	3 ACH50
1138.0	Essex County	Multi-Family with 5+ Units	20 ACH50	3 ACH50
1228.0	East Baton Rouge Parish	Single-Family Detached	30 ACH50	5 ACH50
634.0	Los Angeles County	Single-Family Detached	25 ACH50	3 ACH50

Efficiency measure specifications⁷

Name	Description		
ENERGY STAR Windows	Replace any less-efficient existing windows with windows that meet ENERGY STAR (v7) criteria.		
Thin Triple Windows	Replace any less efficient existing windows with thin triple-pane windows.		
Attic Floor Insulation	Increase attic floor insulation to IECC-Residential 2021 levels for dwelling units with vented attics and any lower level of insulation		
General Air Sealing	30% reduction in infiltration (ACH50) for dwelling units with greater than 10 ACH50 in the baseline		
Duct Sealing	Duct sealing to 10% leakage and R-8 duct insulation for any leakier or less-insulated ducts		
Drill-and-fill Wall Insulation	Drill-and-fill wall insulation (R-13) for dwelling units with no wall insulation and wood stud walls		
Foundation Wall and Rim Joist Insulation	Add R-10 interior insulation to foundation walls and rim joists in conditioned basements and crawlspaces; seal crawlspace vents		
Exterior Continuous Wall Insulation	1" exterior insulation to foundation walls and rim joists in conditioned basements and crawlspaces; seal crawlspace vents		
IECC 2021 Air Sealing	Improve dwelling unit infiltration to IECC 2021 air sealing requirements		
Roof Insulation	R-30 insulation for less-insulated finished attics and cathedral ceilings		
Improved Ventilation	Energy recovery or exhaust-only ventilation added to dwelling units depending on climate zone and ACH50 values.		

Window cost assumptions

- EnergyStar window costs: chose least costly window in REMDB that met or exceeded EnergyStar Standards
- Thin tripe windows: chose least costly window in REMDB with triple panes and U-value and solar gain heating coefficients closest to the specifications

Climate Zone	EnergyStar Window (\$/sqft window)	Thin Triple Window (\$/sqft window)
Northern	45 (Air, H-Gain, Low-E, Non-metal, Triple)	57 (Low-E, Triple, Insulated, Arg, H-Gain)
North Central	45 (Air, H-Gain, Low-E, Non-metal, Triple)	57 (Low-E, Triple, Insulated, Arg, H-Gain)
South Central	46 (Air, L-Gain, Low-E, Non-metal, Triple)	57 (Low-E, Triple, Insulated, Arg, L-Gain)
Southern	39 (Arg, Double, L- Gain, Low-E, Non- metal)	57 (Low-E, Triple, Insulated, Arg, L-Gain)

* The windows chosen for the Southern / South-central climate zones do not meet the specifications set out in the ResStock documentation, but are the closest available option in the cost database.

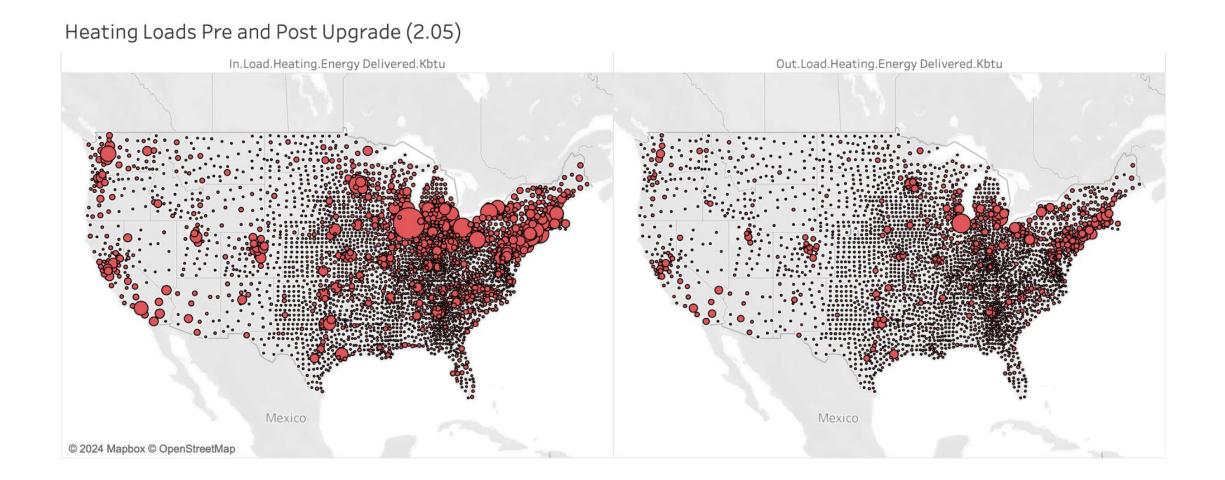
Air sealing cost assumptions

- Two types of air sealing modifications included in the retrofit packages
 - General air sealing (percent reduction in infiltration) and IECC standards (compliance to a certain ACH level)
- Estimated the cost by calculating the difference in ACH levels between baseline and upgraded levels and then mapping to cost using the delta
 - Cost data in table on this page
 - Costs are extrapolated above a delta of 24 ACH as REMDB only includes a difference in air sealing levels up to that number

Delta ACH	Cost (\$/sqft)	Delta ACH	Cost (\$/sqft)
1	0.31	17	3.7
2	0.52	20	4.3
3	0.73	22	4.7
4	0.94	25	5.3
5	1.2	27	5.7
7	1.6	35	7.3
10	2.2	37	7.7
12	2.6	45	9.3
15	3.3	47	9.7

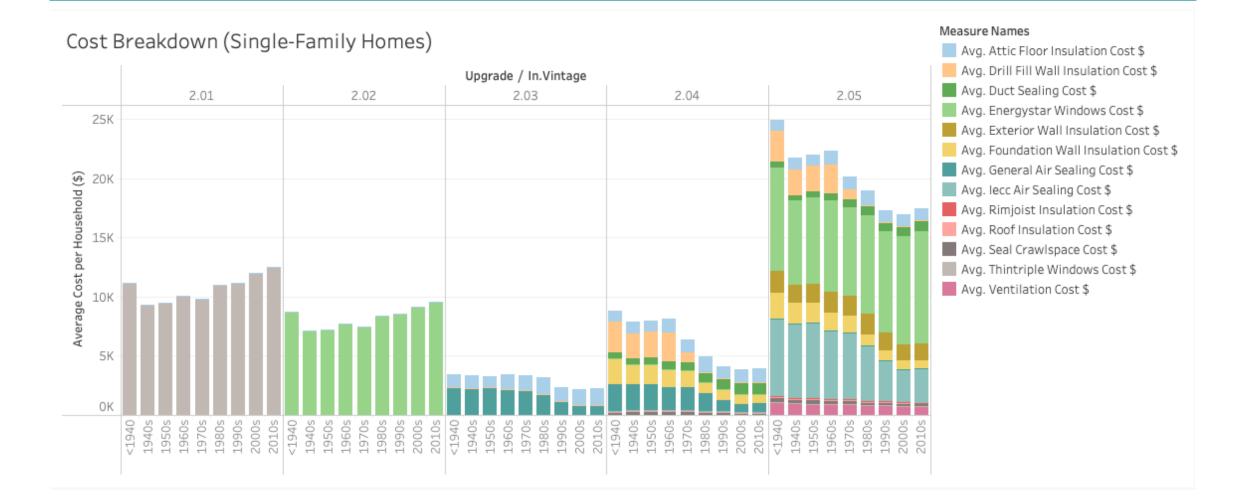
Additional cost assumptions

Measure	Assumptions
Attic Floor Insulation	Fiberglass loose fill insulation
Duct Sealing	Baseline is uninsulated
Drill-and-fill Wall Insulation	Baseline is uninsulated, upgraded to R-13 fiberglass 2 \$/sqft exterior wall
Foundation Wall and Rim Joist Insulation	Baseline is uninsulated, upgraded to R-10 XPS rigid foam board 3.1 \$/sqft of foundation wall + 1.8 \$/sqft of rim joist area
Exterior Continuous Wall Insulation	Baseline is uninsulated, upgraded to R-5 XPS rigid foam board 1.3 \$/sqft of exterior wall
Roof Insulation	Baseline is uninsulated, upgraded to R-30 fiberglass 4.3 \$/sqft roof
Improved Ventilation	\$360 for Exhaust, \$1300 for ERV, 72%


* When multiple options in REMDB complied with the measure specifications, the least costly upgrade was selected

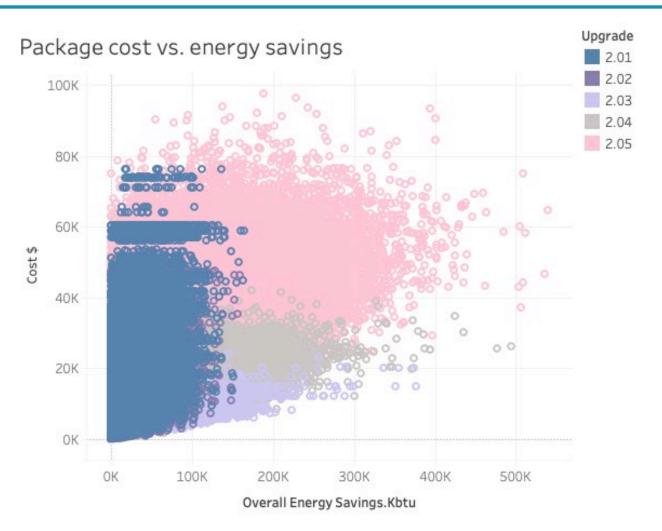
Results

Heating vs. cooling loads

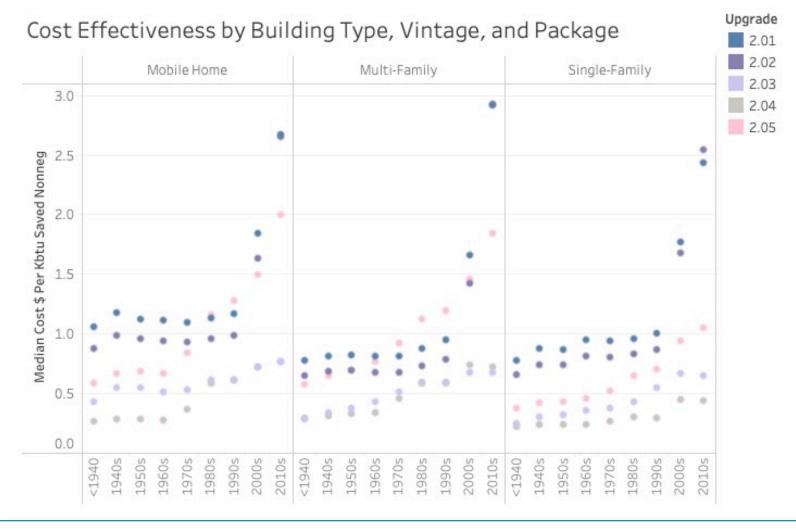


page 22

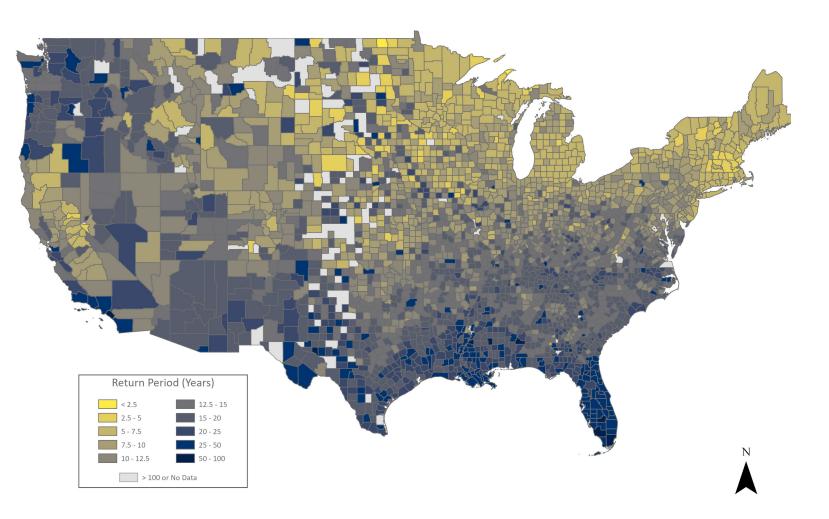
Package cost composition



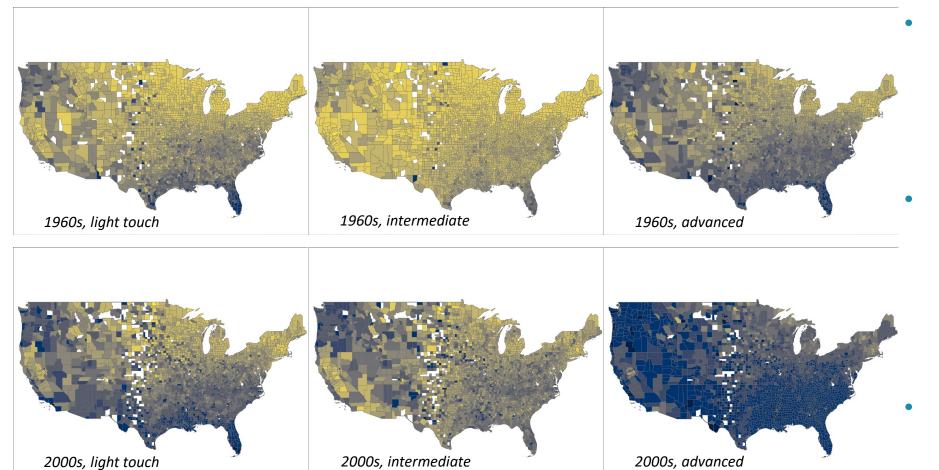
Cost and savings distributions


- Savings from window-only packages rarely yield savings above 0.1 MMBtu
- The variability of overall energy savings is large within each package
- Cost distribution can vary widely within packages containing window replacements. The lighttouch and intermediate packages are more condensed in cost.

Significance of building type and vintage

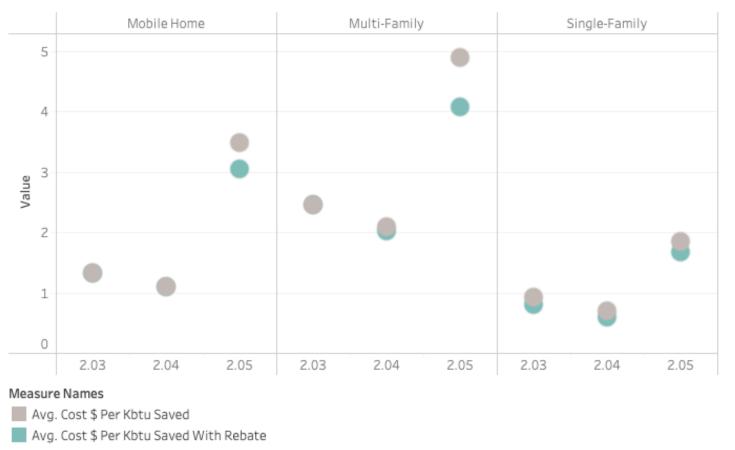

- Cost effectiveness is calculated as the cost per kbtu of energy saved compared to the baseline use (both heating and cooling)
- Building vintage is an important factor in determining costeffectiveness – older structures have more room to improve from a given efficiency upgrade

Utility savings payback period



- Payback period is calculated as the time needed for savings on electricity bills to equal the cost of the retrofit
 - Using local utility rates by zipcode⁸
- Significant variation across counties and vintages
- Figure shows the payback periods for light-touch retrofits of residential homes (vintage 2000s)

Utility savings payback period


- Intermediate package is most likely to have the smallest payback period, but depends on the county
- There are some places where any retrofit will take more than 10 years to pay back in utility bill costs
- Highlights importance of location

Impact of IRA rebates

- The Inflation Reduction Act (2022) authorized tax credits for 30% of qualified expenses related to home energy efficiency, up to \$1200 total⁹
- Rebates have largest impact on the advanced package
 - Includes up to \$600 off window costs
- Inclusion of rebates switches the most cost-effective package for only 0.5% of modeled homes

Cost Effectiveness with and without IRA Rebates

Takeaways

- Window costs matter a lot. The installation of more energy-efficient windows is the largest single component of retrofit package cost.
- Heating vs. cooling. The energy savings from upgrades can vary depending on whether you're trying to keep your home warm or cool. More savings are realized from homes with larger need for heating
- Location, location, location. While the average cost of different retrofit packages (\$/sqft) are similar across the U.S., the impacts on energy demand vary widely as a function of building location due to climate and building codes.

- Age matters too. Building vintage is a significant indicator of cost-effectiveness: simply put, older structures have more room to improve from a given efficiency upgrade.
- The intermediate package wins. Regardless on the amount of savings realized, the intermediate envelope package is likely to give the most bang for your buck spent on retrofitting (\$/kbtu saved).
- Payback periods help give a sense of economics of retrofits. Depending on location, age, and package, it could take less than 2.5 years to save in utility bills the investment in energy efficiency.

THANK YOU

www.evolved.energy

Appendix

• All datasets and code <u>here</u>.