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• Passenger vehicle electrification is critical for 
decarbonization in California, the US, and 
worldwide

• For researchers, planners, and policymakers, the 
question is not only how many cars sold, but who 
adopts, when, and why

Vehicle choice is critical for decarbonization

Source: https://ww2.arb.ca.gov/ghg-inventory-graphs
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Approach Strengths Drawbacks
Discrete-choice modeling (e.g., 
multinomial logit)

Link adoption decisions to price, 
income, and other attributes in a 
policy-relevant way

Struggle to capture path-
dependence and non-linearities 
(e.g., neighborhood effects)

Diffusion models (e.g., S-curves, 
Bass diffusion)

Capture system-wide diffusion 
dynamics incl. path-dependence

Lack granularity: information on 
who adopts why is missing

System models (e.g., 
optimization, equilibrium, 
integrated assessment, energy-
economy)

Capture relationships across the 
energy system; can express 
notions of optimality and 
efficiency

Tend to simplify and homogenize 
household-level behavior

Expert elicitation Fills gaps where data are scarce, 
especially for nascent 
technologies

Subjective

Today’s forefront of adoption modeling
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• Agent-based modeling (ABM) fills gaps: combines arbitrarily high granularity with 
representation of feedbacks, interactions, path-dependence, heterogeneity, and causality

• In each timestep, a set of heterogeneous agents makes adoption decisions based on personal 
attributes, technological attributes, and contextual conditions

• Drawbacks: data- and computationally-intensive, challenging to calibrate

ABM as a complement to existing efforts
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• Project: empirically calibrated ABM of vehicle choice in California
1. Data: agents, technologies, ground truth for calibration

2. ABM: utility construction and choice architecture

3. Simulation-based inference (SBI): Bayesian empirical calibration

• Research questions
1. How can publicly-available data be used to build an ABM of vehicle choice in CA?

2. Can SBI be used to empirically calibrate the ABM, and if so, what does it tell us about vehicle choice 
decision-making?

3. How does IRA repeal impact EV adoption in CA through 2050?

• Deliverables: data, code base (ABM and SBI pipeline), blog post, slide deck

Summer fellowship: project, RQs, deliverables 



Modeling pipeline overview
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Modeling pipeline overview
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N = 100,000 households (288,065 people, 208,906 vehicles)

Synthetic population 
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N = 100,000 households (288,065 people, 208,906 vehicles)

1. Race, housing tenure (rent vs. own), and housing type (single-
family vs. multifamily): random choice from population “pixels” 
and census data (CBG-level)

Synthetic population 

Depsky, N. J., Cushing, L., & Morello-Frosch, R. (2022). High-
resolution gridded estimates of population sociodemographics 

from the 2020 census in California. PLoS One, 17(7), e0270746.

https://data.census.gov/table?q=b25032
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N = 100,000 households (288,065 people, 208,906 vehicles)

1. Race, housing tenure (rent vs. own), and housing type (single-
family vs. multifamily): random choice from population “pixels” 
and census data (CBG-level)

2. Conditional random choice of household size based on tenure 
(CBG-level granularity)

Synthetic population 

https://data.census.gov/table?q=b25009
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N = 100,000 households (288,065 people, 208,906 vehicles)

1. Race, housing tenure (rent vs. own), and housing type (single-
family vs. multifamily): random choice from population “pixels” 
and census data (CBG-level)

2. Conditional random choice of household size based on tenure 
(CBG-level granularity)

3. Conditional random choice of vehicle count based on household 
size (CT-level granularity)

Synthetic population 

https://data.census.gov/table?q=b08201
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N = 100,000 households (288,065 people, 208,906 vehicles)

1. Race, housing tenure (rent vs. own), and housing type (single-
family vs. multifamily): random choice from population “pixels” 
and census data (CBG-level)

2. Conditional random choice of household size based on tenure 
(CBG-level granularity)

3. Conditional random choice of vehicle count based on household 
size (CT-level granularity)

4. Income: lognormally distributed based on census data (CT-level 
granularity), with CT-wide exponentially fitted growth rate

• Limitation: could/should be conditioned on the above. Oh well.

Synthetic population 
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N = 100,000 households (288,065 people, 208,906 vehicles)

1. Race, housing tenure (rent vs. own), and housing type (single-
family vs. multifamily): random choice from population “pixels” 
and census data (CBG-level)

2. Conditional random choice of household size based on tenure 
(CBG-level granularity)

3. Conditional random choice of vehicle count based on household 
size (CT-level granularity)

4. Income: lognormally distributed based on census data (CT-level 
granularity), with CT-wide exponentially fitted growth rate

5. VMT (CBG-level granularity) from Replica (Thursday and 
Saturday)

Synthetic population 

Licensed for UC Berkeley by Replica; do not 
reproduce
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For ICE:

• Sales data 2013-2024 → Scrape KBB starting MSRP → Sales-
weighted average

Tech & context: vehicle capital costs

For BEV, PHEV, HEV:

• Scrape KBB for “equivalent” model MSRPs → Sales-weighted regression for X/ICE cost ratio
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• From Alternative Fuels Data Center: https://afdc.energy.gov/

• Metric: all chargers in ZIP, neighboring zip codes (dist=1), and 
their neighbors (dist=2)

• Weighted sum Σ using 𝑤𝑤 = 1
1+𝑑𝑑 2  I.e., 𝑤𝑤 = 1 for own ZIP, 𝑤𝑤 = 1

4
 for 

neighbors, 𝑤𝑤 = 1
9
 for their neighbors

• Model uses ln(Σ + 1)

Tech & context: EV charging

L2:

DCF:



page 22

• Federal: pre-Inflation Reduction Act (IRA) federal EV tax credit and 
IRA EV tax credits

• State: Clean Vehicle Rebate Program (CVRP) and California 
Clean Fuel Reward (CCFR)

Tech & context: capital cost incentives

Jurisd Pwrtrn 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

USA BEV 7500 7500 7500 7500 7500 7500 7500 7500 7500 7500

USA PHEV 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000

CA BEV 2500 2500 2500 2500 2500 2000 3500 2750 2000 0

CA PHEV 1500 1500 1500 1500 1500 1000 2500 1750 1000 0

• For simplicity, assumed a single incentive below household income cap of $200,000 (from 
2016 for CA, 2023 for USA)

(nominal US$)
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• Electricity and gasoline prices from US EIA (annual CA averages)

• Commodity fuel times: gasoline uses 10 gal/min, electricity uses 
exponential fit from ICCT data
• Bauer, G., Hsu, C. W., Nicholas, M., & Lutsey, N. (2021). Charging up america: Assessing the growing 

need for us charging infrastructure through 2030. White Paper ICCT.

• Vehicle efficiency: same methodology as capital cost

• EV range: sales-weighted average range (scraped from KBB). 
Range for non-BEV pinned at 350 mi

Tech & context: other vehicle attributes
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• Downscaled from combination of:
• ZIP-level registrations by powertrain

• County-level sales by ZEV/non-ZEV

Ground truth: ZIP-level vehicle sales

BEV sales share by zip code, 2015-2024



ABM architecture
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ABM: the “simple” pieces
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ABM: the utility function
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ABM: the utility function
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ABM: the utility function
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ABM: the utility function
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ABM: the utility function
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ABM: the utility function
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ABM: the utility function
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ABM: the utility function
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ABM: the utility function
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ABM: the utility function
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ABM: the utility function
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SBI: definition, description, and challenges
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SBI: What and why

• Bayesian inference where the likelihood p(x∣θ) is intractable but we can simulate data x given 
parameters θ – gives not only “best” parameters but entire posterior distribution

• Recall θ is (at least) 12D, model is highly nonlinear and stochastic… no closed-form likelihood

• But! We can simulate in <2sec (maybe 20sec with larger synthetic population) – “reasonable”

• The idea: “learn” good parameters θ, plus uncertainty quantification, by inferring from the 
results of a (relatively) small set of carefully-chosen simulations

• Key paper and github repo, Dyer et al. 2024:
• Dyer, J., Cannon, P., Farmer, J. D., & Schmon, S. M. (2024). Black-box Bayesian inference for agent-based 

models. Journal of Economic Dynamics and Control, 161, 104827.

• https://github.com/joelnmdyer/sbi4abm
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SBI: How

1. Specify a (wide) prior p(θ)

2. Simulate: draw θi∼p(θ), run ABM with θi to produce xi​, extract summary statistics Si

3. Embed Si to lower-dimensional representation si

4. Train a NN qϕ​(θ∣s) to approximate posterior p(θ∣s)

5. Sequential refinement: draw new θs closer to high-posterior regions, retrain, repeat

6. Evaluate qϕ on (embedded) ground-truth s* to get qϕ​(θ∣s*), sample to get parameter 
distribution
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1. Specify a (wide) prior p(θ)
• BoxUniform distributions for each parameter, with reasonable (approx. [-4,4]) ranges

2. Simulate: draw θi∼p(θ), run ABM with θi to produce xi​, extract summary statistics Si

• ~1000+ simulations per parameter, multiple rounds
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Currently using a joint ZIP-state embedding network: 80,000D down to 80D

• 4 powertrain proportions x 1,600 ZIPs x 10 years + “magnitude” channel for weighting

• Joint embedding (hopefully) captures sales-weighted ZIP-level, and statewide, powertrain 
proportions

SBI: embedding network
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Currently using a Normalizing Flow density estimator

• Substantial patching and safeguards for faster sampling, prior bounds enforcement, numerical 
stability, etc.

• Challenging to make “play well” (leakage issue: predicted posterior mass outside prior range)

SBI: neural net for inference
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SBI difficulties

• SBI to empirically calibrate ABM is active research frontier
• Methodological papers; some simpler, more expensive forms of SBI (e.g., approximate Bayesian computation) on 

adoption ABM; neural SBI on much simpler ABM

• Substantial progress on SBI pipeline, but still no parameter estimates I’d feel comfortable 
relying on for policy analysis

• “Manual” SBI: feasible θ based on (eyeball) matching statewide simulated powertrain sales 
shares with historical trend

Var. hchg vmt tco cc_pr mpm neigh state l2 dcf a_bev a_hev a_ph
Val. 0 -1 -1.5 -0.3 0.5 1.0 0.5 1 1 -3.5 -1.8 -2.2
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Candidate θ performace

Ground truth:

ABM:



Usage example: IRA repeal simulations
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• Test impact of IRA repeal (no federal incentives beginning 2026) vs. counterfactual (federal 
incentives continue through 2032)

• Sensitivities: commodity cost changes, capital cost changes, EV range improvements, ICE 
efficiency improvements, charging network build-out

Scenario analysis setup

L2 chg e.g.Capital costs
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Results

• IRA repeal substantially reduces 
EV sales shares from 2026-2032

• (sensitivity mean, 10%-90% CI, 
and full min-max range are shown)
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Results

• This has a lasting impact on EV 
stock shares across sensitivities
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Results

• Capital cost changes (particularly 
EV cost declines) are the most 
impactful sensitivity

• Opportunity for interactive data 
visualizations and highly granular 
analysis
• (ideally post-SBI, with uncertainty 

represented by multiple runs for each 
sensitivity, both due to stochasticity 
and uncertainty quantification of SBI)
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Distributional impacts

• All income quartiles impacted by IRA repeal

• Wealthier ZIPs seem to “rebound” to a lower BEV stock 
gap by 2050
• Neighborhood effects? Can’t currently rule out charging 

infrastructure, etc., but could look into that

*** all sensitivities set to “med”



Conclusions
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• ABM presents a promising, if data- and computationally-intense, avenue for modeling vehicle 
choice in CA
• Strong representation of feedbacks, interactions, path-dependence, heterogeneity, and causality

• By and large, data are available for model construction and calibration

• SBI could be used to empirically calibrate such a complex and high-dimensional model, but it is 
very challenging
• Existing framework shows promise, but is not yet fully functional/reliable

• Further work is necessary to extend to such a large-scale model context

• IRA repeal substantially reduces BEV sales shares 2026-2032, which has a lasting impact on 
BEV stock shares
• Capital cost changes are a key uncertainty moving forward

Key takeaways
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