Agent-based modeling of vehicle choice in California

September 15, 2025

Prepared For

EER Communications

Prepared by:

Ari Ball-Burack, EER Summer Research Fellow

Agenda

- 1. Why ABM for vehicle choice?
- 2. Modeling pipeline overview
- 3. Data description
- 4. ABM architecture
- 5. SBI: definition, description, and challenges
- 6. Usage example: IRA repeal simulations
- 7. Conclusions

Why ABM for vehicle choice?

Vehicle choice is critical for decarbonization

- Passenger vehicle electrification is critical for decarbonization in California, the US, and worldwide
- For researchers, planners, and policymakers, the question is not only how many cars sold, but who adopts, when, and why

2022 GHG Emission by Scoping Plan Sub-Category

Source: https://ww2.arb.ca.gov/ghg-inventory-graphs

Today's forefront of adoption modeling

Approach	Strengths	Drawbacks		
Discrete-choice modeling (e.g., multinomial logit)	Link adoption decisions to price, income, and other attributes in a policy-relevant way	Struggle to capture path- dependence and non-linearities (e.g., neighborhood effects)		
Diffusion models (e.g., S-curves, Bass diffusion)	Capture system-wide diffusion dynamics incl. path-dependence	Lack granularity: information on who adopts why is missing		
System models (e.g., optimization, equilibrium, integrated assessment, energy-economy)	Capture relationships across the energy system; can express notions of optimality and efficiency	Tend to simplify and homogenize household-level behavior		
Expert elicitation	Fills gaps where data are scarce, especially for nascent technologies	Subjective		

ABM as a complement to existing efforts

- Agent-based modeling (ABM) fills gaps: combines arbitrarily high granularity with representation of feedbacks, interactions, path-dependence, heterogeneity, and causality
- In each timestep, a set of heterogeneous agents makes adoption decisions based on personal attributes, technological attributes, and contextual conditions
- Drawbacks: data- and computationally-intensive, challenging to calibrate

Summer fellowship: project, RQs, deliverables

- Project: empirically calibrated ABM of vehicle choice in California
 - 1. Data: agents, technologies, ground truth for calibration
 - 2. ABM: utility construction and choice architecture
 - 3. Simulation-based inference (SBI): Bayesian empirical calibration
- Research questions
 - 1. How can publicly-available data be used to build an ABM of vehicle choice in CA?
 - 2. Can SBI be used to empirically calibrate the ABM, and if so, what does it tell us about vehicle choice decision-making?
 - 3. How does IRA repeal impact EV adoption in CA through 2050?
- Deliverables: data, code base (ABM and SBI pipeline), blog post, slide deck

Data description

N = 100,000 households (288,065 people, 208,906 vehicles)

N = 100,000 households (288,065 people, 208,906 vehicles)

Race, housing tenure (rent vs. own), and housing type (single-family vs. multifamily): random choice from population "pixels" and census data (CBG-level)

Depsky, N. J., Cushing, L., & Morello-Frosch, R. (2022). High-resolution gridded estimates of population sociodemographics from the 2020 census in California. *PLoS One*, *17*(7), e0270746.

https://data.census.gov/table?q=b25032

N = 100,000 households (288,065 people, 208,906 vehicles)

Race, housing tenure (rent vs. own), and housing type (single-family vs. multifamily): random choice from population "pixels" and census data (CBG-level)

2. Conditional random choice of household size based on tenure

(CBG-level granularity)

https://data.census.gov/table?q=b25009

N = 100,000 households (288,065 people, 208,906 vehicles)

- Race, housing tenure (rent vs. own), and housing type (single-family vs. multifamily): random choice from population "pixels" and census data (CBG-level)
- Conditional random choice of household size based on tenure (CBG-level granularity)
- Conditional random choice of vehicle count based on household size (CT-level granularity)

American Community Survey Universe: Househo	ids 2023: ACS 5-Year Estimates Detailed Tables	Notes Geo					
Label	Census Tract 4237; Alameda County; California						
LABOU	Estimate	Margin of					
✓ Total:	1,143						
No vehicle available	261						
1 vehicle available	447						
2 vehicles available	212						
3 vehicles available	213						
4 or more vehicles available	10						
1-person household:	349						
No vehicle available	93						
1 vehicle available	216						
2 vehicles available	32						
3 vehicles available	8						
4 or more vehicles available	0						
2-person household:	393						
No vehicle available	108						
1 vehicle available	184						
2 vehicles available	75						
3 vehicles available	26						

https://data.census.gov/table?q=b08201

N = 100,000 households (288,065 people, 208,906 vehicles)

Race, housing tenure (rent vs. own), and housing type (single-family vs. multifamily): random choice from population "pixels" and census data (CBG-level)

- Conditional random choice of household size based on tenure (CBG-level granularity)
- 3. Conditional random choice of vehicle count based on household size (CT-level granularity)
- 4. Income: lognormally distributed based on census data (CT-level granularity), with CT-wide exponentially fitted growth rate
 - Limitation: could/should be conditioned on the above. Oh well.

N = 100,000 households (288,065 people, 208,906 vehicles)

- Race, housing tenure (rent vs. own), and housing type (single-family vs. multifamily): random choice from population "pixels" and census data (CBG-level)
- Conditional random choice of household size based on tenure (CBG-level granularity)
- Conditional random choice of vehicle count based on household size (CT-level granularity)
- 4. Income: lognormally distributed based on census data (CT-level granularity), with CT-wide exponentially fitted growth rate
- 5. VMT (CBG-level granularity) from Replica (Thursday and Saturday)

Licensed for UC Berkeley by Replica; do not reproduce

Tech & context: vehicle capital costs

For ICE:

 Sales data 2013-2024 → Scrape KBB starting MSRP → Salesweighted average

For BEV, PHEV, HEV:

Scrape KBB for "equivalent" model MSRPs → Sales-weighted regression for X/ICE cost ratio

Tech & context: EV charging

- From Alternative Fuels Data Center: https://afdc.energy.gov/
- Metric: all chargers in ZIP, neighboring zip codes (dist=1), and their neighbors (dist=2)

- Weighted sum Σ using $w = \frac{1}{(1+d)^2}$ I.e., w = 1 for own ZIP, $w = \frac{1}{4}$ for neighbors, $w = \frac{1}{9}$ for their neighbors
- Model uses $ln(\Sigma + 1)$

L2:

Tech & context: capital cost incentives

 Federal: pre-Inflation Reduction Act (IRA) federal EV tax credit and IRA EV tax credits

- State: Clean Vehicle Rebate Program (CVRP) and California Clean Fuel Reward (CCFR)
- For simplicity, assumed a single incentive below household income cap of \$200,000 (from 2016 for CA, 2023 for USA)

Jurisd	Pwrtrn	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
USA	BEV	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
USA	PHEV	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
CA	BEV	2500	2500	2500	2500	2500	2000	3500	2750	2000	0
CA	PHEV	1500	1500	1500	1500	1500	1000	2500	1750	1000	0

(nominal US\$)

Tech & context: other vehicle attributes

- Electricity and gasoline prices from US EIA (annual CA averages)
- Commodity fuel times: gasoline uses 10 gal/min, electricity uses exponential fit from ICCT data

- Bauer, G., Hsu, C. W., Nicholas, M., & Lutsey, N. (2021). Charging up america: Assessing the growing need for us charging infrastructure through 2030. *White Paper ICCT*.
- Vehicle efficiency: same methodology as capital cost
- EV range: sales-weighted average range (scraped from KBB).
 Range for non-BEV pinned at 350 mi

Ground truth: ZIP-level vehicle sales

- Downscaled from combination of:
 - ZIP-level registrations by powertrain
 - County-level sales by ZEV/non-ZEV

BEV sales share by zip code, 2015-2024

ABM architecture

ABM: the "simple" pieces

- 1. Per-household, per-powertrain utilities → softmax and random choice
- 2. Update fleet (leads to new neighborhood and statewide plug-in prevalence)
- 3. Summary results (e.g., annual sales or stock by powertrain)

ABM: the utility function

ABM: the utility function

SBI: definition, description, and challenges

SBI: What and why

- Bayesian inference where the likelihood $p(x|\theta)$ is intractable but we can **simulate** data x given parameters θ gives not only "best" parameters but entire posterior distribution
 - Recall θ is (at least) 12D, model is highly nonlinear and stochastic... no closed-form likelihood
 - But! We can simulate in <2sec (maybe 20sec with larger synthetic population) "reasonable"
- The idea: "learn" good parameters θ , plus uncertainty quantification, by inferring from the results of a (relatively) small set of carefully-chosen simulations
- Key paper and github repo, Dyer et al. 2024:
 - Dyer, J., Cannon, P., Farmer, J. D., & Schmon, S. M. (2024). Black-box Bayesian inference for agent-based models. Journal of Economic Dynamics and Control, 161, 104827.
 - https://github.com/joelnmdyer/sbi4abm

SBI: How

- 1. Specify a (wide) prior $p(\theta)$
- 2. Simulate: draw $\theta_i \sim p(\theta)$, run ABM with θ_i to produce x_i , extract summary statistics S_i
- 3. Embed S_i to lower-dimensional representation s_i
- 4. Train a NN $q_{\phi}(\theta|s)$ to approximate posterior $p(\theta|s)$
- 5. Sequential refinement: draw new θ s closer to high-posterior regions, retrain, repeat
- 6. Evaluate q_{ϕ} on (embedded) ground-truth s^* to get $q_{\phi}(\theta|s^*)$, sample to get parameter distribution

SBI: the simple piece

- 1. Specify a (wide) prior $p(\theta)$
 - BoxUniform distributions for each parameter, with reasonable (approx. [-4,4]) ranges
- 2. Simulate: draw $\theta_i \sim p(\theta)$, run ABM with θ_i to produce x_i , extract summary statistics S_i
 - ~1000+ simulations per parameter, multiple rounds

SBI: embedding network

Currently using a joint ZIP-state embedding network: 80,000D down to 80D

- 4 powertrain proportions x 1,600 ZIPs x 10 years + "magnitude" channel for weighting
- Joint embedding (hopefully) captures sales-weighted ZIP-level, and statewide, powertrain proportions

SBI: neural net for inference

Currently using a Normalizing Flow density estimator

- Substantial patching and safeguards for faster sampling, prior bounds enforcement, numerical stability, etc.
- Challenging to make "play well" (leakage issue: predicted posterior mass outside prior range)

SBI difficulties

- SBI to empirically calibrate ABM is active research frontier
 - Methodological papers; some simpler, more expensive forms of SBI (e.g., approximate Bayesian computation) on adoption ABM; neural SBI on much simpler ABM
- Substantial progress on SBI pipeline, but still no parameter estimates I'd feel comfortable relying on for policy analysis
- "Manual" SBI: feasible θ based on (eyeball) matching statewide simulated powertrain sales shares with historical trend

Var.	hchg	vmt	tco	cc_pr	mpm	neigh	state	12	dcf	a_bev	a_hev	a_ph
Val.	0	-1	-1.5	-0.3	0.5	1.0	0.5	1	1	-3.5	-1.8	-2.2

Candidate θ performace

ABM:

Usage example: IRA repeal simulations

Scenario analysis setup

- Test impact of IRA repeal (no federal incentives beginning 2026) vs. counterfactual (federal incentives continue through 2032)
- Sensitivities: commodity cost changes, capital cost changes, EV range improvements, ICE
 efficiency improvements, charging network build-out

Results

- IRA repeal substantially reduces EV sales shares from 2026-2032
- (sensitivity mean, 10%-90% CI, and full min-max range are shown)

Results

 This has a lasting impact on EV stock shares across sensitivities

Results

- Capital cost changes (particularly EV cost declines) are the most impactful sensitivity
- Opportunity for interactive data visualizations and highly granular analysis
 - (ideally post-SBI, with uncertainty represented by multiple runs for each sensitivity, both due to stochasticity and uncertainty quantification of SBI)

Distributional impacts

*** all sensitivities set to "med"

- All income quartiles impacted by IRA repeal
- Wealthier ZIPs seem to "rebound" to a lower BEV stock gap by 2050
 - Neighborhood effects? Can't currently rule out charging infrastructure, etc., but could look into that

Conclusions

Key takeaways

- ABM presents a promising, if data- and computationally-intense, avenue for modeling vehicle choice in CA
 - Strong representation of feedbacks, interactions, path-dependence, heterogeneity, and causality
 - By and large, data are available for model construction and calibration
- SBI could be used to empirically calibrate such a complex and high-dimensional model, but it is very challenging
 - Existing framework shows promise, but is not yet fully functional/reliable
 - Further work is necessary to extend to such a large-scale model context
- IRA repeal substantially reduces BEV sales shares 2026-2032, which has a lasting impact on BEV stock shares
 - Capital cost changes are a key uncertainty moving forward

THANK YOU

